书摘 | 复杂-米歇尔

复杂性是个很前沿的概念。它处于物理、社会等学科的交叉领域,一个搞不好可能会做成伪科学。这个书摘是来自《复杂性.米歇尔》,算是复杂性研究中的圣经了,因此用速读法看了看。

复杂系统初探

  1. 蚁群、大脑、免疫系统、经济、万维网都是复杂系统,复杂系统的一个定义是,具有涌现和自组织行为的系统。它们有一些共性
  2. 复杂的集体行为。个体一般都遵循简单的规则,没有中央系统
  3. 没有内部或外部的控制者,有时称为自组织,这种系统的宏观行为有时称为涌现

动力学、混沌和预测

  1. 动力学系统是以某种方式随时间变化的系统
  2. 混沌系统指的是对于初试位置和动量的测量如果有极其微小的不精确,也会导致对其长期预测产生巨大的误差
  3. 混沌系统产生的关键原因是非线性。非线性是还原论的梦魇。
  4. 逻辑斯蒂映射,$x_{t+1} = Rx_t(1-x_t)$,我们知道简单的确定性方程能产生类似于随机噪声的确定性轨道。不管初始条件有多接近,在足够长时间之后,轨道还是会分开。所以除非你知道初试值的无穷小数位,不然你就无法精确地预测未来。
  5. 逻辑斯蒂映射最初会产生不动点,然后周期振荡,最后出现混沌,这是通往混沌的倍周期之路
  6. 算出产生倍周期(2,4,8)倍的R值表,R在增加,但是R之间距离越来越短,用它计算分叉之间的靠近速度,收敛速度是一个常数,为4.6692016,关键在于其他连续函数也是。这是著名的费根鲍姆常数。
  7. 看似混沌的行为可能来自确定性系统;一些简单的确定性系统长期变化,对于初试条件的敏感依赖性,即使在原则上也无法预测;混沌中存在秩序,可以使用分叉、吸引子等描述

信息

  1. 复杂系统中的自组织行为,与传统的有序消退无序增长方向相反,有序是从无序中产生的。可以用信息刻画有序和无序。
  2. 麦克斯韦妖的解决方案:妖精通过测量获取信息的行为做功了。熵和信息就此结合起来。
  3. 香农熵:信息熵,玻尔兹曼熵:热熵

计算

  1. 香农的信息定义关注信息源的可预测性,但在现实世界,信息是用来分析并产生有意义的东西,即信息是用来计算的。
  2. 哥德尔不完备性定理:,”这个命题是不可证嘚的”
  3. 图灵证明,没有计算程序能解决所有问题。
0%